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Abstract—Increased globalisation and competition are drivers for 

process analytical technologies (PAT) that enable seamless process 

control, greater flexibility and cost efficiency in the process industries. 

This research aims to introduce an integrated process control 

approach, embedding novel sensors for monitoring in real time the  

critical  control  parameters  of  key  processes  in  the  minerals,  

ceramics,  non-ferrous  metals,  and  chemical  process industries. The 

paper will discuss smart sensors, data fusion and process modelling 

and control in industrial applications with an emphasis on solutions 

enabling the real-time data analytics of sensor measurements that PAT 

demands.  
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I.  INTRODUCTION  

This paper will give a snapshot of industrial applications of 
data fusion and process modelling and  control encountered in 
research to determine the key elements of a global control 
platform for use in industrial processes as part of their 
implementation of PAT [1] shown in Figure I-1. The FDA have 
defined PAT to be “a system for designing, analysing, and 
controlling, manufacturing through timely measurements (i.e., 
during processing) of critical quality and performance attributes 
of raw and in-process materials and processes, with the goal of 
ensuring final product quality.” [2].  

A concept closely aligned with PAT is Quality by Design 
(QbD) by which key strategic process specific attributes are 
identified in order to devise a robust control strategy which is 
monitored and constantly updated for continuous process 
improvement [3]. Section II will mention some chemometric 
techniques used to develop process models for such a strategy. 

The key word in the definition of PAT is ‘timely’ as PAT is 
concerned with observing the progression of reactions/processes 
(in batch or semi-continuous processes) as well as controlling 
process stability (in continuous processes), which requires real-
time, in-line or on-line process measurements and the 
application of real-time data analytics. This paper will focus on 
the latter topic with Section III reviewing some approaches 
involving machine learning in adaptive process control. 

Section IV will overview the benefits of smart sensors to a PAT 
system, particularly in terms of cost, ease of integration and 
maintenance. Section V will investigate the application of a 
wider control platform, with respect to data fusion, to tackle the 
pre-existing barriers to the adoption of PAT- the lack of a 
flexible platform for sensor integration and handling the large 
volumes of data generated.  

 

Figure I-1 ProPAT's integrated process control approach. 

II. PROCESS MODELLING 

A. Chemometrics 

Chemometrics is an interdisciplinary science encompassing 
chemistry and computer science, where information is extracted 
from chemical data by data-driven means [4]. The aim of 
Process modelling in PAT is to produce an understanding of how 
the critical control parameters affect end product quality. 

This research project will develop Near Infrared 
Spectroscopic (NIRS) sensors and Particle Size Scatterometers 
for analysing powers and resins in the process industry [1]. 
Much of the work done in chemometrics is with regard to 
Infrared Spectroscopy. Multivariate sensor data from NIRS is 
useless without calibration against supporting references [5].  
Real-time, in-line and cost-effective temperature, moisture and 
viscosity sensors (amongst other sensors for monitoring key 
strategic product parameters) will be provided for 
complementary sensor fusion with the NIR sensors for 
chemometrics to extract information on chemical composition 
and moisture content. As will be discussed in later sections of 
this paper, increased process knowledge is achieved through 
sensor fusion, e.g. as in a granulation process similar to a case 
study dealt with in this work, which fuses microwave resonance 
and NIR sensors for particle size measurement [6]. This paper 
will not investigate chemometric techniques but will note that 
the common tools for multivariate calibration include 
Multivariate Statistical Process Control (MSPC) through Partial 
Least Squares (PLS) and other algorithms and soft-modelling 
methodologies such as Multivariate Curve Resolution (MCR) 
[3]. 

The research project receives funding from the European Community‘s 
Framework programme for Research and Innovation Horizon 2020 (2014-
2020) under grant agreement no. 637232. 



III. ADAPTIVE CONTROL 

Adaptive/Predictive Control involves using process 
understanding of the effects of adjusting critical control 
parameters at any given time on future product quality in order 
to optimise process development. There is an inherent link 
between adaptive control and process modelling in the previous 
section, as this is where the models developed by chemometrics 
are applied to improve process efficiency. Adaptive Control 
involves monitoring the process in order to become familiar with 
its behaviour. This procedure can be done by process experts 
(through Model Predictive Control (MPC) [7], [8] or other 
algorithms [9])  or be automated with the use of machine 
learning techniques such as Kalman Filters, Neural Networks or 
Adaptive Neuro-Fuzzy Inference Systems. 

A. Kalman Filters 

The Kalman Filter and its extensions are remarkably simple 
and effective algorithms [10] that have been used in applications 
in trajectory estimation, robot motion planning and control, 
sensor fusion [11] and sensor calibration. It is an “optimal 
recursive estimator of the state of an uncertain dynamic system” 
contaminated by white Gaussian noise [12]. Its main advantage 
is its ability to operate in real-time [12] and overcome noise [13] 
although it has limitations when outliers are present [10].  

Implementing Kalman filters in a microcontroller digitally is 
challenging however because of the high computational 
complexity and effect of quantisation error on stability. 
Technological advancements such as FPGA based System On 
Chip (SoC) platforms have made it possible and mean that the 
application of Kalman filters is likely to spread in the near future 
[12]. A smart sensor implementation of Kalman Filters was 
encountered in this research in a radio wave moisture sensor 
where the sensor applies Kalman Filters for situations with non-
continuous material flow to achieve more intelligent continual 
averaging and produce an analog output for process control in 
concrete mixer and fluid bed dryer applications [14]. 

B. Artificial Neural Networks  

Artificial Neural Networks are a computing paradigm 
inspired by the functioning of the human brain. Like the human 
brain, it is composed of many computing cells or ‘neurons’ that 
each perform a simple operation and interact with each other to 
make a decision. 

The simplest form of a neuron is a perceptron (where inputs and 
outputs are binary), with more complicated neurons simply 
having floating point inputs and outputs and a transfer function 
applied to give better sensitivity at the threshold of decision 
making. Each neuron multiplies each of its inputs by a weight 
dependent on the importance of the input to the decision the 
neuron is making [15]. To give an example in industry, if we 
wanted to determine if our process was at a particular stage of 
its development cycle, we may treat one of the inputs, say 
viscosity, with a greater weight than another input, e.g. moisture 
content, based on the fact that viscosity is a better indicator of 
process development. The sum of products of the inputs and 
their weights is then compared with a bias value to determine the 
output of the neuron. Adjusting the proportions of the weights 
with respect to each other or with respect to the bias greatly 
influences the decision-making process. When many neurons 

are combined in a network as in Figure III-1 [16], quite 
complicated decisions can be made.  

Neural networks learn using a set of input for which the 
correct outputs are given, called a training set. The network 
adjusts the weights and biases of the neurons so that the correct 
output is produced by the neuron without influencing the 
decision making of the rest of the network. Machine learning can 
be performed on a pre-collected training set or can occur online 
as a process is running (which can be supervised or 
unsupervised). A cost function, otherwise known as a loss or 
objective function is used to determine how well the network is 
learning by adjusting the weights and biases to find the 
minimum mean squared error from the correct output for 
example. Since finding the minimum of a function with many 
variables is not computationally easy using differentiation, a 
gradient descent technique (among other techniques)  runs 
simulations to estimate the minimum cost function [17]. The 
area of Deep Learning is all about learning or ‘credit 
assignment’ across many layers of a neural network accurately, 
efficiently and without supervision and is of recent interest due 
to enabling advancements in processing hardware [18]. 

The success of machine learning relies on ‘Big Data’ (very 
large data sets) and on the fact that more data beats wiser 
algorithms. The algorithms produced are tailored to their 
specific process and focus is taken away from developing the 
perfect process model meaning less time and labour is spent on 
manually fine-tuning a model which may have to change 
anyway. The acquisition and storage of vast amounts of data, the 
vanishing gradient problem [19] and overfitting (developing 
over complicated models that fit the training data precisely) are 
challenges associated with neural networks. Ortega-Zamorano 
et al. highlight the difficult task of selecting the right neural 
network architecture for any particular application and proposes 
Constructive Neural Networks (CoNNs) that generate networks 
that grow as input information is received. The proposed 
solution also has a short training period and employs 
competition between neurons and filtering to prevent over-
fitting [20]. 

Such is the versatility of Neural Networks that they have 
been implemented for many sensor applications including 
metrological performance enhancement [21] (calibration, 
nonlinearity correction, offset, identification), actuation control, 
sensor fault detection and classification  [22], [23], process 
control [24], large sensor arrays [25] and sensor fusion [26], 
[27].  

Figure III-1 Neural Network  



C. Adaptive Neuro-Fuzzy Inference Systems 

Fuzzy logic is a method by which a human’s linguistic 
interpretation can be translated to and from measurements 
readable by a microprocessor (in numerical format). For 
example, we recognise colour as belonging to a subset (a 
membership set) or even a number of subsets under which a 
range of colours can lie, e.g. red, amber, yellow. Fuzzy logic can 
be used to quantify colour sensor measurements in the same way 
and use them for industrial control applications [28]. A fuzzy 
control unit performs three basic processes; fuzzification 
(translating the sensor readings to the degrees of ownership to 
each of the controller’s membership sets), rule evaluation (the 
Fuzzy Inference Unit (FIU)), and defuzzification (translating the 
fuzzy outputs to system outputs for process control) [29]. At the 
core of the controller is the FIU which uses a set of fuzzy rules 
defined by the user to map fuzzy inputs to fuzzy outputs [30], 
e.g. in a polymerisation example dealt with in this research, if 
the colour shade of the resin gets too dark, then stop the process. 

Fuzzy control offers the advantage of being able to easily 
translate operator insight of a process into controller 
nonlinearities. Thus, it offers a better user interface that enables 
internal expertise to be exploited [31]. The technology has been 
applied to improving control in conventional PID controllers in 
industrial processes, e.g. polymerisation, distillation [31] and 
manufacturing process control [32]. Fuzzy logic alone does not 
provide adaptive control however. ANFIS [33] combine Fuzzy 
logic and neural networks to provide the advantages of both 
technologies [34], [35] and mostly start with a fuzzy system to 
which neural network learning is applied [29]. Combined Fuzzy 
Logic and Neural Network systems that start with neural 
networks and apply fuzzy logic are in more recent development 
and adapt in a more sophisticated manner [29]. 

D. Genetic Algorithms  

Genetic algorithms, or more broadly, Evolutionary 
algorithms are global search and optimisation techniques 
inspired by the principles of natural evolution and genetics. It is 
a heuristic approach that works well on complicated real-world 
problems where traditional optimization methods frequently fail 
or perform poorly [36]. Frank describes evolutive learning as the 
‘ultimate technology’ for automatically applying machine 
learning to any application [29]. It is still an emerging 
technology that has not yet been widely applied in industry [34]. 

IV. SMART SENSORS 

According to Malar and Kamaraj “20% of the total cost of a 
data acquisition system belongs to the hardware  configuration 

and calibration of sensors” [37]. 

A smart sensor is a sensor with some additional functionality 
it owes to the addition of a microprocessor [38]. An increase in 
cost is introduced by the addition of a microcontroller, however, 
the advantages introduced offset this cost. Wei et al. detail how 
making a sensor IEEE 1451 conformant (a smart sensor family 
of standards aimed at enabling plug and play capability) 
provides signal conditioning and processing, self-recognition 
and self-documentation  easing system integration. As a result, 
the time taken to setup a sensor network is drastically reduced 
along with the related costs [39]. 

Costs can also be incurred from incorrect calibration arising 
from the manual entry of important parameters. The resultant 
inaccuracy leads to a deviation from optimum process control. 
Smart sensors enable remote/automatic calibration so that the 
sensor’s parameters can be corrected promptly without the need 
for manual intervention and process downtime. Thus, 
maintenance costs are reduced as are costs associated with poor 
product quality [40]. 

Ongoing development in MicroElectroMechanical Systems 
has brought many improvements to the smart sensor industry. 
MEMS sensors are serially manufactured by means of mature 
technologies derived from the semiconductor industry. With 
such mass production, comes reduced cost. MEMS is now a 
mature industry where a lot of the research has been done in the 
area of the engineering process [41], cofabricating sensors with 
electronics (CMOS-MEMS) [42], reducing production time 
[43], improving yields [44] and developing new manufacturing 

technologies [45]. 

According to Gaura and Newman, smart sensors process the 
signal from the sensor element, to eliminate non-linearity due to 
sensor imperfections, and communicate the information 
digitally. Gaura and Newman also define two further degrees of 
intelligence; Intelligent and cogent sensors. Intelligent sensors is 
a term, although sometimes interchangeable with ‘smart 
sensors’, to define sensors that go a processing step further and 
provide a measurement relevant to the sensors application [46]. 
Data processing features may include multivariate analysis to 
produce correlated measurements (e.g. temperature/pressure 
compensation). The reduction of data to ‘real world’ 
measurements means that the central control platform needs 
only to be concerned with the process information and not the 
specific protocols and conversion ratios of each sensor in its 
network. Cogent sensors reduce the data down to information 
the application requires using data fusion techniques, trend 
recognition and decision-making [47]. Deviations from normal 
operation or natural stages in product development can be 
identified and transmitted. Unnecessary data is not passed on 
which reduces network traffic and makes the sensor very 
suitable for use in very large distributed control systems.  

V. DATA FUSION 

Data fusion, or Sensor fusion, refers to the analysis of 
multiple sensor outputs to achieve better process understanding 
than that which would have been possible when considering the 
sensor outputs independently [48]. 

Sensor fusion is implemented on a basic level in sensors with 
temperature compensation (or pressure compensation, etc.). 
Sensor fusion can be used to create virtual or ‘soft sensors’. Soft 
sensors or virtual sensors can be used to boost process 
understanding achievable from available hardware. For one 
reason or another, the sensors used in a process control approach 
have limitations such as poor accuracy, poor field of 
measurement, or perhaps the parameter we want to measure 
cannot be measured due to limited budget, extreme process 
conditions or nonexistence of sensor technology. To give some 
examples of data fusion encountered in this research application; 
mass flow can be better calculated using outputs from both a 
microwave sensor and a Particle Size Scatterometer. Also, an 



NIR sensor can be calibrated in real-time against the supporting 
sensors. Larger scale data fusion is often implemented with 
neural networks [46] and other machine learning approaches 
discussed previously. A number of fusion algorithms have been 
developed perform tasks such as deciding on what sensors to 
fuse based on their reliability [50] and performing distributed 
sensor fusion [51], [52]. 

Data fusion can be categorised in a number of ways, e.g. based 
on inputs and outputs or on configuration, as in Table V-1.  

Table V-1 Categorisation based on Sensor Configuration [48]. 

Category1 Competitive Complementary Cooperative 

Fused 
Sensors 
measure: 

the same 
phenomenon 

different 
phenomena 

multiple 
phenomena 

Fusion 
achieves: 

Better 
reliability, 
accuracy & 
robustness 

A more 
complete view 
of the process 

Data 
unavailable 
from 
individual 
sensors 

Aspects Redundant 
configuration  

Sensors are not 
interdependent-
offers a more 
complete view 

Difficult -
accuracy & 
reliability 
are reduced 

Example Sensor arrays NIRS 
calibration 

E-nose [49] 

1 Categories are not exclusive, sensor fusion can be a blend of the categories. 

A. Architectures 

Data fusion architectures describe the distribution of sensors 
and the treatment to be applied to the data from each sensor. 
Working with a diversity of sensors with distinct output formats 
and periodicity requires a robust protocol to communicate 
between all components of the system. A fusion architecture can 
apply different levels of data representation to the inputs 
dependent on how influential they are to the decision-making 
process. Architectures should also have protocols dictating how 
to deal with issues such as sensor failure, corrupt or incompatible 
data and any other difficulties that could arise [53].  

Multi-sensor fusion architectures are classified according to 
how the data/workload is distributed and can be centralised, 
decentralised, publish/subscribe or mobile agent based [53]. 
Architectures usually have 3-4 layers:  

 Physical layer (communication protocols,  data alignment) 

 Fusion layer (performs processing on data) 

 Data presentation layers (output data or perform decisions) 

There is a trade-off to be considered when deciding to 
implement data processing at the sensor or at the fusion centre 
(or ‘on the cloud’) as outlined in  

Table V-2. Sensor processing can be limited by constraints 
such as computational ability, storage space, battery life and 
communication ability. However, doing all of the processing at 
the fusion centre means the communication of raw data and 
heavy network traffic. A balance is therefore required where the 
data processing duties are divided between the sensor and the 
fusion centre [54].  

Table V-2 Centralised vs. decentralised data fusion. 

Centralised architectures Decentralised 
architectures 

One point of data fusion- the 
fusion centre. 

Data fusion is distributed 
between dedicated fusion 
modules or by sensors 
themselves. 

Requires more computational 
ability at fusion centre and a 
communications network 
with sufficient bandwidth.  

Requires sensors to have 
more computational ability, 
i.e. smart sensors. 

Allows global view of a 
process from original data. 

Decision module receives 
interpretations of data by 
fusion modules- doesn’t 
allow a global view. 

Failure at fusion centre 
means catastrophic system 
failure. 

Failure due to module 
malfunction can be 
prevented by sharing lost 
fusion processes between 
remaining modules. 

Greater complexity at fusion 
module. 

Adds increased system 
complexity.  

Benoit and Foulloy present a novel method of leaving further 
processing to higher levels while avoiding complexity by simply 
communicating the function definitions to be implemented that 
are coherent and specific to each node, i.e. lower nodes transmit 
source code for higher nodes to execute. The required processing 
capability of the microcontroller at each node is reduced, 
reducing cost [55]. Publish/subscribe and mobile agent-based 
architectures reduce the required bandwidth, tolerate faults and 
offer better network scalability and adaptability [53].  

Distributed Control becomes increasingly advantageous, 
particularly as the average number of sensors in a typical 
network has grown in recent years. Distributed Control allows 
greater freedom - a constant communication link is not required 
and reduced network traffic enables less bulky (fewer wires) or 
even wireless communication protocols to be used.  

B. Frameworks 

A number of frameworks describing the underlying structure 
of a data fusion system have been proposed in an effort to 
organise the knowledge about the systems environment, e.g. 
Mitchell and Esteban frameworks [53]. The best-known fusion 
framework is the JDL framework which defines 4 levels of data 
fusion [56]: 

1. Object Refinement: data alignment and data association. 
2. Situation Assessment: describes the situation in terms of 

indications of warnings and plans of action. 
3. Impact Assessment: awareness of the future 

consequences of decisions to process development. 
4. Process Assessment: an ongoing assessment of the other 

fusion stages to ensure optimal results.   

Smith and Singh give an overview of contemporary 
techniques in distributed data fusion respective to the 4 levels of 
the JDL model as well as the remaining challenges in data 
fusion, for instance, uncertainty management, out of sequence 
measurements and data correlation [56]. 



C. Versatile Integration Platform 

This research project’s work on data fusion to date has 
concerned level 1 of the JDL framework or the physical layer of 
a fusion architecture: defining a protocol over which all the 
sensors in a network can communicate.  

RS485 has been identified as a communications interface 
suited to harsh industrial environments and was determined to 
be most appropriate for use in this project as all the selected 
sensors utilise this interface (or use RS232 serial interface which 
can be easily used on an RS485 bus with a converter module). 
The acquisition system to be developed will be a hybrid solution 
between a multipoint communication network using RS485 for 
the commercial sensors and a point-to-point communication 
system such as RS232 for complex sensors (NIR and particle 
size sensors) being developed in the project. 

Since a number of the sensors use different communication 
protocols (Modbus, Profibus, IMPbus, etc.), the development of 
a custom universal communications protocol is required. The 
sensors send frames that include a field with its identifier on the 
network enabling multiple devices to be daisy-chained onto the 
RS485 bus. There is a need to be able to assign IDs to each of 
the devices on the bus in the event that sensors have the same ID 
ex-factory. The time stamp of every acquisition should also be 
included in the packets in order to easily associate data at higher 
levels of data fusion.  

VI. FUTURE TRENDS 

With the proliferation of MEMS technology and more 
affordable sensors comes the revolution of the Industrial Internet 
of Things (IIOT) where large sensor networks can be 
implemented to continually monitor industrial environments 
with unprecedented levels of detail [57]. Such pervasive sensing 
applications have been described as a dream by Gaura & 
Newman which is getting closer to being realised due to 
distributed control, plug and play capability, and improving 
MEMS manufacturing techniques [58].  

This paper has identified some recent research in machine 
learning for industrial applications to provide an autonomous 
versatile control platform. Autonomous sensors reduce cost as 
less expert analysis is required at the central control unit. A 
counter-argument to such unsupervised, decentralised control is 
that removing human interaction is a major loss. There is no 
processor more powerful than the human brain (work is still 
ongoing in understanding our learning and memory mechanisms 
with a view to using this understanding in computer science 
[59]) and the input from experts on the particular process and 
algorithm developers is often very valuable. That being said, the 
cost of such expert analysis is very high, unfeasible and 
unnecessary in the long term. Therefore autonomous control is 
favourable for most applications and is an active area of research 
as increasing processing capabilities of microcontroller 
hardware empowers more sophisticated algorithms. 

Machine learning is an exciting technology that mimics 
human intelligence. Gaura and Newman give an interesting 
suggestion of how a sensor network could be inspired by a 
human’s central nervous system, where transmitting raw data 
from all sensors (eyes, ears, nose, skin, etc.) is not feasible due 
to the sheer amount of data, and the sensors have a neural 

network memory element that learns what is normal so that 
sensors only transmit when something abnormal happens [46]. 
A similar system architecture model found in nature as 
inspiration for data fusion networks is localised decision-making 
where cells talk to their neighbours to work out how to position 
themselves [60]. Such mimicry of nature is common in research 
into technological advancement striving to achieve the 
efficiency and simplicity present in biological systems. 

VII. CONCLUSION 

 This paper has reviewed industrial applications of predictive 
control and data fusion relevant to the implementation of PAT. 
Sensor fusion will be utilised to improve performance in the 
sensor networks of PAT applications. The first challenge to 
overcome in order to achieve this was discussed in Section V.C- 
the collection and alignment of sensor outputs. An overview was 
given of the benefits smart sensor technology provides to a 
system-wide control approach. The paper also investigated 
machine learning methods that can be utilised in higher levels of 
data fusion to achieve better process understanding and control 
and has identified upcoming trends in the area. ANFIS has been 
identified as a method with wide applications that provides 
adaptive control while also taking advantage of internal process 
knowledge. Taking into account the background knowledge 
detailed in this review, it is now possible to go about developing 
a versatile global control platform for PAT.  
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