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Abstract—Increased globalisation and competition are 

drivers for process analytical technologies (PAT) that enable 

seamless process control, greater flexibility and cost efficiency in 

the process industries. This research is carried out in 

collaboration with a  project which aims to introduce an 

integrated process control approach, embedding novel sensors 

for monitoring in real time the  critical  control  parameters  of  

key  processes  in  the  minerals,  ceramics,  non-ferrous  metals,  

and  chemical  process industries. The paper will review the 

development of a suite of affordable sensors along with smart 

sensor features and algorithms for easier integration, easier 

maintenance, metrological performance enhancement, process 

monitoring and control and sensor fusion for use within this 

versatile global control platform implementing PAT. Smart 

sensors will be investigated that match existing offline solutions 

in performance while enabling size reductions, low power 

consumption, low unit costs, low maintenance costs and data 

fusion. 

I. INTRODUCTION  

PAT involves the implementation of sensors to provide 
real-time data on a process to which data analytics is applied 
to gain better process understanding and improved product 
quality. PAT entails the use of affordable, non-destructive, 
at-line measurement techniques coupled with process 
analytics to deliver outstanding process understanding and 
enable predictive control to operate industrial processes at 
their optimum. A concept closely aligned with PAT is 
Quality by Design (QbD) by which key strategic product 
specific attributes are identified in order to devise a robust 
control strategy which is monitored and constantly updated 
for continuous process improvement [1]. 

This paper will review the selection of sensors for use in 
a number of case study industrial processes as part of their 
adoption of PAT and QbD. The main applications of interest 
encountered in this research include the measurement of 
moisture content and mass flow rate of powders and 
moisture content in polymer resins, as even though 
monitoring these parameters is critical to process control in 
many applications, they are not widely measured compared 
to parameters such as temperature or liquid flow. 
Consequently, there is a need to document the selection 
process from the limited range of sensors available for these 
difficult applications.  

Smart sensors integrate traditional sensors with 
microprocessors and a communications interface. Smart 

sensors are ideal for PAT applications as (a) the intelligence 
provided enhances their measurement performance and their 
applicability in large sensor networks where decentralized 
control can greatly reduce network traffic and computational 
complexity at the fusion centre and (b) the communications 
interface provided enables sensor measurements to be 
transmitted in the desired format over a standard protocol, 
further reducing the complexity of data fusion.  

Section II of this paper will examine the availability of 
affordable, versatile smart sensors for the target applications. 
Section III will look at some of their features that ease sensor 
maintenance and integration thus overcoming the pre-
existing barriers to the adoption of PAT- high sensor cost, 
lack of internal knowledge within processing operations and 
the existence of dedicated sensors and data management 
systems for unique situations.  

II. APPLICATION SPECIFIC SMART SENSORS 

The following sensor applications were identified by 
partners of the ProPAT project [1], to be realized to provide 
data on key strategic product specific measurands for process 
modelling and control and also to complement the 
multivariate data produced by Near Infrared Spectroscopic 
(NIRS) sensors and Particle Size Scatterometers also being 
developed by the project. The case-study industrial processes 
involved in the project include a pharmaceutical continuous 
tableting line, a milling process for ceramics and non-ferrous 
metals, a milling process for minerals and a chemical 
polymerisation process. The former 3 processes handle 
powders with the latter process manufacturing liquid resins. 

A. Temperature of powders 

As the absorbance spectra measured by NIRS is affected 
by temperature [2], a temperature reference is required to 
calibrate the multivariate data. In the aforementioned powder 
applications, the powder is constantly moving through the 
processes, by freefall or pneumatic conveyance, and the 
temperature of the particles should ideally be measured 
rather than the surrounding atmosphere. Noncontact 
temperature measurement lends itself to such an application.  

Infrared (IR) Temperature sensors are commonly used 
for noncontact measurement of the surface temperature of 
the objects. They average the infrared radiation emitted by 
surfaces in their field of view, so in this application, an 
average reading of the stream of powder and pipe wall in the 
background is produced. IR sensors can be configured to 
measure substances of a particular emissivity [3] thus 
allowing only the powder (which will have a high 
emissivity) to be measured and the reflective background of 
the process (which for our applications is stainless steel) to 
be ignored. 
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A number of different optical configurations are available 
to adjust the spot size dependent on the distance between the 
powder stream and the sensor. The main issue to address for 
IR and any other optical sensors would be keeping the lens 
clean as powder build up will mean the sensor will only 
measure the surface temperature of the coating that sits on 
the lens itself. A number of solutions are available including 
situating the probe clear of the powder, using pneumatics 
(either built into the probe [4] or from the process) to clean 
the lens periodically and using a sight glass with particular 
shape/material properties that prevent the powder build-up 
[5]. 

B. Moisture content of Powders 

Moisture content is a critical control parameter in the 
project’s pharmaceutical continuous tableting line 
application as it directly affects the products quality in terms 
of shelf-life and must be carefully controlled to maintain 
process stability during granulation [6, Sec. 7.1] and drying 
stages of the process. NIR sensors are commonly used to 
measure moisture content in pharmaceutical applications as 
water shows strong absorption bands [7], it provides 
noncontact measurement, it does not require sample 
preparation and it provides real-time data. NIR will be used 
for moisture content measurement in this project, as well as 
the measurement of chemical composition to control the 
critical rates of API in the product. However, NIR is not 
without its limitations. NIR has poor depth of penetration 
meaning the sample is not representative if the process 
materials are nonhomogenously distributed (sampling 
techniques can be used to overcome the problem [2]). Also, 
the multivariate data from NIRS is useless without 
calibration against supporting references [7]. Similarly to 
temperature, a real-time in-line, cost-effective moisture 
measurement was desired to complement the NIR data for 
chemometrics.  

The availability of low-cost sensors for measuring 
moisture content in bulk solids is not widespread. Recent 
research has been dedicated to the utilisation of a number of 
principles including capacitance, electrostatics and 
microwave resonance. 

Electrical Capacitance tomography (ECT) and Electrical 
Resistance tomography (ERT) have been employed [8], [9] 
and offer the advantage of producing a tomograph of 
moisture distribution rather than just perform point 
measurements. A drawback is that the integration cost is 
quite high (€10k plus) as a custom solution is required (the 
method has only recently been commercialised [10]). Also, 
the measurement is dependent on bulk density which is 
undesirable in a process with varying ingredients/product 
lines. Planar capacitive type sensors have also been 
developed, but are also very expensive [11]. 

Triboelectric probes are generally implemented for 
measuring the concentration of dust particles in air [12] and 
measure the electrostatic charge deposited by particles onto a 
earthed probe producing a current proportional to the mass 
flow and moisture content of the particles. A recent  study 
found that the method was capable of moisture measurement, 
but only during the drying phase after the agglomerates 
produced from wet granulation had broken up somewhat [5]. 

Also, only point measurement is performed and many probes 
costing in the region of €3000 would be required to quantify 
process moisture distribution. 

Microwave Resonance involves measuring reflection and 
transmission of microwave radiation to determine moisture 
content. The microwave field changes its polarity rapidly, 
only water molecules can follow this change as they are 
small and have a strong dipole and the energy required to 
move these water molecules is measured [7]. The method 
holds advantages over NIR including deeper penetration 
depth and no requirement for chemometric calibration [13] 
and commercial offerings are available at a moderate cost 
[14]. Similar sensors that penetrate the sample with invisible 
electromagnetic waves are acoustic and radio wave sensors. 
Acoustic sensors require moisture levels greater than 15% 
and are therefore unsuitable for the application [5]. Radio 
wave sensors were discovered that are manufactured by 
IMKO GmBh for moisture determination in grains and 
minerals and use TDR (Time Domain Reflectometry) by 
measuring the time it takes the waves to be reflected to  
measure the material’s dielectric constant [15] which is 
dependent on moisture content [16]. The benefits of this 
unique measurement method [17], coupled with the selected 
wavelength of 600MHz to 1.2 GHz Band (which make it 
suitable for measuring larger particles than microwave 
methods [18]), and the fact that they are a third of the cost of 
microwave sensors make the method a very interesting 
solution for moisture determination in solids. 

C. Mass Flow Rate of Powders 

The mass flow rate of bulk solids is another parameter 
that is lacking a cost-effective solution even though it is 
invaluable to process understanding in many applications. 
Electrostatics, capacitance, thermal transduction, optics and 
acoustics have all been identified as principles by which 
inferential measurement of mass flow can be achieved [19]. 
However, these methods have yet to be commercialised. 
There is no shortage of sensors for the mass flow of liquids 
and gases, (turbine, Coriolis, ultrasonic and thermal to name 
a few) but unfortunately, these sensors are unsuitable for the 
mass flow of powders as they cannot distinguish between the 
mass flow of air and the mass flow of slower moving 
particles. Microwave sensors are the most prevalent in-line 
technique for particles conveyed pneumatically/in free-fall. 
They operate by emitting electromagnetic waves and 
analysing the reflected signal to produce a mass flow 
measurement (by the Doppler Effect, signals from the 
particles are frequency shifted – the amplitude and frequency 
shift of the signal is proportional to mass flow [20]). The 
microwave method was chosen for the application for its 
applicability to any powder material and its moderate cost 
[21]. Possible alternative solids mass flow sensors in order of 
commercial availability for the purpose include differential 
pressure [22] (requires flow impeding orifice/venturi tube), 
triboelectric [23] (not commonly implemented for the 
application, offers no cost advantage), ECT [24] (very 
expensive), optical [25] (available for use in particle 
concentration/turbidity measurement, applicability requires 
investigation), acoustic [26] and thermal sensors [27] 
(developed in research but not commercially available). 



D. Viscosity of polymer resins 

One of the applications for which sensors were sourced is 
monitoring the viscosity of unsaturated polyester resin. As 
with the previous powder applications, the viscosity sensor’s 
data will support an NIR sensor in chemometric analysis, to 
determine chemical composition and monitor the progress of 
the chemical reaction. The applications main difficulty is the 
high process temperatures of up to 240°C which required a 
more expensive, heat resistant viscometer to be selected. 
Viscometers can reasonably be divided into 2 categories 
based on their measurement principle, Solid-state 
viscometers and Mechanical viscometers. The main 
difference between the two types is the presence of moving 
parts, which require more maintenance and possess a settable 
shear rate for better accuracy and applicability to non-
Newtonian fluids, but a narrower viscosity range. A solid 
state torsional oscillating quartz viscometer was ultimately 
selected for its low cost and small size. The selected sensor 
excites a piezoelectric element at high frequency and 
monitors the electrical frequency response as the resonating 
crystal interacts with the material under test [28].  

E. Colour of polymer resins 

Colour sensors were investigated for monitoring colour 
during the polymerisation process of alkenyl succinic 
anhydride (C16/18 ASA) for paper sizing produced from the 
high-temperature reaction of isomerized olefins and maleic 
anhydride, where the resin’s amber shade gets darker with 
process development. True colour sensors are suitable for 
such an application as they can determine colour difference 
with greater accuracy than the human eye [29] and when 
used with heat-resistant fibre-optic cables, can be easily 
applied to extreme applications. The selected sensor was 
chosen as it has 6 spectral filters [30] which would yield 
more information than the more common arrangement with 3 
filters (for red, green and blue wavelengths). Such a multi-
spectral sensor performs measurement of an entire spectrum 
(the filters’ spectral sensitivities overlap) and can 
compensate metamerism effects [29]. The sensor has digital 
outputs that can be programmed to trigger when colour 
changes/deviates from a set tolerance.  Fuzzy logic can also 
be used to quantify colour measurements and use them for 
industrial control applications [31]. 

F. Moisture content in polymer resins 

This section outlines the selection of moisture sensors for 
monitoring the moisture content in the process in Section E. 
The moisture measurement is made before polymerisation 
when the polymer reactor is flushed with olefin and raised to 
160°C to ensure clean and dry reactor systems. A sensor is 
required to replace a Karl Fischer titration test to determine if 
the moisture content has fallen below 100ppm. 

Methods for moisture measurement mentioned in Section 
B (NIR and Microwave Resonance) are unsuitable for the 
application as they cannot measure at a low enough moisture 
level (without data fusion). 

Intrinsic fibre-optic moisture sensors have been 
developed that can withstand high temperatures [32], 
measure low moisture content [33] and for measuring 
moisture ingress in polymers [34]. The change in refractive 

index of a sensing element (Fibre Bragg Grating), at the end 
of or along fibre-optic cable, as it absorbs moisture is 
measured. The sensors require the use of expensive analysers 
to implement. 

Capacitive Moisture sensors that are used to measure 
humidity in air/moisture in oil can be made to withstand the 
high temperatures and sensors are available that can offer the 
required accuracy and range at lower temperatures. 
Measurement of moisture content at high temperatures is 
much more difficult though, as the dielectric constant of 
water decreases with increasing temperature [35] and at low 
moisture content, dielectric permittivity becomes more 
dependent on the fluctuations of the medium (which are 
many in a chemical reaction at high temperature) than on 
water content. Also, the technology capable of the required 
accuracy for this application cannot yet be manufactured 
robustly enough to withstand the high temperatures. As a 
result, the heat-resistant sensors available are accurate to 
only 300ppm [36]. The more sensitive sensors could possibly 
be used if they were removed from/cooled during the higher 
temperatures of polymerisation but manual interaction or 
having a heat sink on the process is nonideal. 

Water Cut meters for measuring the water cut of oil in oil 
refineries (that also measure dielectric permittivity) are a 
possible solution as these meters are suited to low moisture 
contents and high temperatures (e.g. Max. temperature: 
232°C, Resolution: 200ppm for 0-1% range [37]). The 
application is also quite similar as the dielectric constant for 
polymers is low, as it is for oil, compared to the high 
dielectric constant (approx. 80) of water. 

Due to the difficulty of the application, a clear solution 
has yet to be identified. The measurement could possibly be 
achieved through sensor fusion (with an NIR sensor and a 
capacitive sensor) which has been implemented in industry 
to achieve better process understanding than that which is 
possible when considering the sensor outputs independently. 

III. SMART SENSOR BENEFITS 

This section is concerned with features of commercially 
available smart sensors. The ISO/IEC/IEEE 21451.x 
standards, previously known as IEEE 1451.x, define the 
interface standards for smart transducers [38]. As many 
papers have demonstrated, the plug and play capability of 
smart sensors in a ‘dynamic network’ (a network with all 
sensors being plug and play) has improved flexibility, 
efficiency, integrity, reliability and network performance, 
and reduced cost by automating sensor configuration with 
self-describing behaviour [39]–[41]. Unfortunately these 
standards are not recognised outside of the automotive, 
aerospace and defence industries, a fact which will hopefully 
change in the near future if more awareness is raised and the 
Industrial Internet of Things (IIOT) drives activity [42]. 

A smart sensor is a sensor with some additional 
functionality it owes to the addition of a microprocessor [43]. 
Gaura and Newman give an overview to the degrees of this 
added functionality by which sensors can be classified as 
being smart, intelligent or cogent [44]. There have been 
many research papers focused on using the intelligence of 
smart sensors for sensor calibration/reprogramming [45]–



[47], trend recognition [48], fault tolerance [49], process 
diagnostics [50] and sensor fusion (temperature/pressure 
compensation) [51], [52] and distributed data fusion [53]. 

A. MEMS sensors 

Ongoing development in MicroElectroMechanical 
Systems has brought many improvements to the smart sensor 
industry. MEMS sensors are manufactured at a micrometre 
scale and provide compactness, easier process integration, 
faster response time, low production costs, low power 
consumption. CMOS logic circuits are often integrated with 
MEMS sensors to provide the increased performance and 
reliability related to smart sensors and provide better 
reliability and adaptability [54], despite the inherent poor 
signal to noise ratio of MEMS devices [55]. MEMS lend 
themselves to wireless applications and allow more sensors 
to be deployed to gather more data and achieve a more 
detailed, distributed view of a process. Therefore MEMS 
have an essential role in the IIOT and the industry will 
experience huge growth [56]. 

Surface Acoustic Wave (SAW) sensors were investigated 
for the viscosity application in Section II.D but were deemed 
unsuitable as they are not manufactured to withstand the high 
temperatures of the application as of yet. SAW sensors use 
MEMS technology and can be used to measure a plethora of 
parameters (chemical vapours, moisture, temperature, force, 
acceleration, shock, angular rate, displacement, viscosity 
[57], flow, film characterization, pH levels, ionic 
contaminants, and electric fields) and offer the potential of  
being wirelessly powered by energy harvesting approaches 
[58]. Passive sensors open up the possibility for sensors to 
form part of the process (e.g. "flow tracker sensors") in order 
to report bulk properties that are very difficult to measure by 
static sensors. Future developments in Bulk Acoustic Wave 
(BAW) and SAW technology to withstand higher process 
temperatures may see the arrival to the market of a more 
affordable sensor for the application in Section II.D [59]. 

B. Algorithm implementation 

No transducer is without nonidealities and no process is 
without interdependent process parameters. Algorithms can 
be implemented by a smart sensor’s microprocessor to 
account for sensor nonlinearity, convert sensor signals to 
meaningful process measurements and even for sensor 
fusion, i.e. temperature compensation in intelligent sensors.  

Performing processing at the sensor greatly reduces 
complexity at higher processing levels. Examples of such 
intelligence are now found in many commercial sensors and 
the movement of data processing to the ‘edge’ of a data 
acquisition system (decentralised intelligence) has been 
identified as a recent trend with many benefits [60]. 

C. Decision-making capabilities 

Cogent sensors can use their memory capabilities to 
identify certain process conditions or trends in process 
development and signal these events to the rest of the 
network. Basu et al. detail an example for monitoring oil 
degradation [61].  

D. Remote configuration 

Process conditions can change over time, invalidating 
original calibration parameters / original program operation. 
Traditionally, recalibration involves performing manual 
adjustments to sensor hardware which is costly, time- 
consuming and hazardous in some industrial situations. As 
the size of sensor networks grows, so does the calibration 
burden, particularly process downtime due to the calibration 
procedure and breakdowns. A smart sensor’s microprocessor 
and communications interface can be used to mitigate these 
costs. A commercial implementation has been demonstrated, 
that  not only performs calibration over the Fieldbus, 
employing software control for better precision and 
predictability, but also uses sensor intelligence and some 
approved performance test to detect when a sensor needs to 
be calibrated meaning less frequent calibration is required 
[62]. The problem of trying to create a test system to handle 
a wider set of sensors is another challenge which is being 
looked at in the industry [60]. Algorithms/firmware can also 
be updated via a smart sensor’s communication interface, 
e.g. in the selected sensor in Section II.B [15]. 

E. Machine learning 

The implementation of self-learning algorithms can make 
sensors truly autonomous. Trends in process conditions can 
be recognised by algorithms trained by past data. Self-
learning algorithms are often implemented as Artificial 
Neural Networks, a computing paradigm that mimics the 
human brain, composed of many computing cells or 
‘neurons’ each performing simple operations and interacting 
with each other to make a decision.  

The success of machine learning is down to ‘Big Data’ 
(very large data sets) and on the fact that more data beats 
wiser algorithms. The algorithms produced are tailored to 
their specific process and focus is taken away from 
developing the perfect process model meaning less time is 
spent by process experts manually fine-tuning a model which 
may have to change anyway. The acquisition and storage of 
vast amounts of data, the vanishing gradient problem [63] 
and overfitting (developing over complicated models that fit 
the training data precisely) are challenges associated with 
machine learning. 

Ortega-Zamorano et al. highlight the difficult task of 
selecting the right neural network architecture for any 
particular application and proposes Constructive NNs 
(CoNNs) that generate networks that grow as input 
information is received, has a short training period and 
employs competition between neurons and filtering to 
prevent over-fitting [45]. 

Predictive/Adaptive Control involves using process 
understanding of the effects adjusting of the critical control 
parameters at any given time on future product quality in 
order to optimise process development. It involves the 
monitoring of the process in order to become familiar with 
typical process conditions. This procedure can be done by 
process experts (by Model Predictive Control (MPC) [64]) or 
be automated with the use of machine learning techniques 
such as Kalman Filters [65], Neural Networks [64], Adaptive 
Neuro-Fuzzy Inference Systems (ANFIS) [66], [67] or 
Evolutionary algorithms [68]. 



Predictive control is usually implemented at higher 
processing levels, however a smart sensor example is found 
in the radio wave sensor in Section II.B where the sensor 
applies Kalman Filters for applications with noncontinuous 
material flow to achieve more intelligent continual averaging 
and produce an analog output for process control [15]. 

IV. CONCLUSION 

 This paper has reviewed the availability of sensors for a 
number of unique and challenging applications in an 
endeavour to find affordable solutions and reduce the cost of 
the adoption of PAT. The functionalities provided by smart 
sensors have eased the challenges faced by the project, 
particularly in easing sensor integration and maintenance and 
reducing the complexity of the global control platform to be 
developed. This reduced complexity of data fusion is very 
advantageous in a PAT implementation as employing data 
fusion will further improve measurement performance and 
enable better process understanding. For example, mass flow 
can be better calculated using outputs from both the selected 
microwave sensor and the Particle Size Scatterometer 
developed by the project. Also, an NIR sensor can be 
calibrated in real-time against the supporting sensors. Future 
work in this research will investigate the development of the 
first layer of a sensor fusion platform: handling multiple 
sensor protocols and aligning sensor data. 

With the proliferation of MEMS technology and more 
affordable sensors comes the revolution of the IIOT where 
large sensor networks can be implemented to continually 
monitor industrial environments with unprecedented levels 
of detail [60]. Such pervasive sensing applications have been 
described as a dream by Gaura and Newman, which is 
getting closer to being realised due to distributed processing, 
plug and play capability and improving MEMS 
manufacturing techniques [69]. The concept is in line with 
the PAT philosophy: to apply, in real-time, process 
measurements and data analytics, to deliver outstanding 
process understanding and enable predictive control to 
operate industrial processes at their optimum, both 
economically and environmentally, while ensuring high 
levels of quality. 
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